Decoding stimulus duration from neural responses in the auditory midbrain Running Head: Decoding stimulus duration in the auditory midbrain

نویسندگان

  • Brandon Aubie
  • Riziq Sayegh
  • Thane Fremouw
  • Ellen Covey
  • Paul A. Faure
چکیده

Neurons with responses selective for the duration on an auditory stimulus are called duration-tuned neurons (DTNs). Temporal specificity in their spiking suggests that one function of DTNs is to encode stimulus duration; however, the efficacy of duration encoding by DTNs has yet to be investigated. Herein, we characterize the information content of individual cells and a population of DTNs from the mammalian inferior colliculus (IC) by measuring the stimulus-specific information (SSI) and estimated Fisher Information (FI) of spike count responses. We found that SSI was typically greatest for those stimulus durations that evoked maximum spike counts, defined as best duration (BD) stimuli, and that FI was maximal for stimulus durations off BD where sensitivity to a change in duration was greatest. Using population data, we demonstrate that a maximum likelihood estimator (MLE) can accurately decode stimulus duration from evoked spike counts. We also simulated a two-alternative forced choice task by having MLE models decide whether two durations were the same or different. With this task we measured the just-noticeable difference threshold for stimulus duration, calculated the corresponding Weber fractions across the stimulus domain, and found that neural performance for duration discrimination was similar to behavioural performance in the same task measured in some birds and mammals, including humans. Altogether, these results demonstrate that the spiking responses of DTNs from the mammalian IC contain sufficient information for the CNS to encode, decode, and discriminate behaviourally relevant auditory signal durations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoding stimulus duration from neural responses in the auditory midbrain.

Neurons with responses selective for the duration of an auditory stimulus are called duration-tuned neurons (DTNs). Temporal specificity in their spiking suggests that one function of DTNs is to encode stimulus duration; however, the efficacy of duration encoding by DTNs has yet to be investigated. Herein, we characterize the information content of individual cells and a population of DTNs from...

متن کامل

Duration tuning across vertebrates.

Signal duration is important for identifying sound sources and determining signal meaning. Duration-tuned neurons (DTNs) respond preferentially to a range of stimulus durations and maximally to a best duration (BD). Duration-tuned neurons are found in the auditory midbrain of many vertebrates, although studied most extensively in bats. Studies of DTNs across vertebrates have identified cells wi...

متن کامل

Organization and trade-off of spectro-temporal tuning properties of duration-tuned neurons in the mammalian inferior colliculus.

Neurons throughout the mammalian central auditory pathway respond selectively to stimulus frequency and amplitude, and some are also selective for stimulus duration. First found in the auditory midbrain or inferior colliculus (IC), these duration-tuned neurons (DTNs) provide a potential neural mechanism for encoding temporal features of sound. In this study, we investigated how having an additi...

متن کامل

Computational models of millisecond level duration tuning in neural circuits.

Discrimination of stimulus duration on the order of milliseconds has been observed in behavioral and neurophysiological studies across a variety of species and taxa. Several studies conducted in mammals have found neurons in the auditory midbrain (inferior colliculus) that are selective for signal duration. Duration selectivity in these cells arises from an interaction of excitatory and inhibit...

متن کامل

Duration tuning in the mouse auditory midbrain.

Temporal cues, including sound duration, are important for sound identification. Neurons tuned to the duration of pure tones were first discovered in the auditory system of frogs and bats and were discussed as specific adaptations in these animals. More recently duration sensitivity has also been described in the chinchilla midbrain and the cat auditory cortex, indicating that it might be a mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014